Anomaly-induced sound absorption in Weyl semimetals
نویسندگان
چکیده
Topology of Weyl semimetals affects sound attenuation in these materials. Most notably, the existence Berry monopoles associated with linear band crossings leads to acoustic magnetochiral dichroism: is different for opposite directions propagation. The effect within reach current experimental techniques, and, importantly, quantum mechanical origin. This should help its detection available compounds.
منابع مشابه
Magnetic torque anomaly in the quantum limit of Weyl semimetals
Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. H...
متن کاملElectromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals.
Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find t...
متن کاملPhotocurrents in Weyl semimetals
Ching-Kit Chan,1 Netanel H. Lindner,2 Gil Refael,3 and Patrick A. Lee1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Physics Department, Technion, 320003 Haifa, Israel 3Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 13 August 2016; revised m...
متن کاملCharge transport in Weyl semimetals.
We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity σ(ω,T) by solving a quantum Boltzmann equation within a "leading log" approximation and find it to be proportional to T, up to logarithmic factors arising from the flow of couplings. In the nonintera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.103.214309